Refined instrumental variable methods for identification of LPV Box-Jenkins models

نویسندگان

  • Vincent Laurain
  • Marion Gilson
  • Roland Tóth
  • Hugues Garnier
چکیده

Identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown that the currently available linear regression and instrumental variable methods from the literature are far from being optimal in terms of bias and variance of the estimates. To overcome the underlying problems, a refined instrumental variable method is introduced. The proposed approach is compared to the existing methods via a representative simulation example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Identification of Continuous-Time LPV Input/Output Models

Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuoustime (CT) requiring accurate and low-order CT models of the system. However, identification of continuous-time LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of C...

متن کامل

Instrumental variable scheme for closed-loop LPV model identification

Identification of real-world systems is often applied in closed loop due to stability, performance or safety constraints. However, when considering Linear Parameter-Varying (LPV) systems, closed-loop identification is not well-established despite the recent advances in prediction error approaches. Building on the available results, the paper proposes the closed-loop generalization of a recently...

متن کامل

A refined IV method for closed-loop system identification

This paper describes an optimal instrumental variable method for identifying discrete-time transfer function models of the Box-Jenkins transfer function form in the closed-loop situation. This method is based on the Refined Instrumental Variable (RIV) algorithm which, because of an appropriate choice of particular design variables, achieves minimum variance estimation of the model parameters. T...

متن کامل

Refined Instrumental Variable Identification of Continuous-Time OE and BJ Models from Irregularly Sampled Data

This paper looks at the problem of system identification from non-uniformly sampled input-output data. It describes how refined instrumental variable estimators can be derived to directly identify the parameters of continuous-time output error and Box-Jenkins transfer function models from irregularly sampled data. Monte Carlo simulation analysis is used to illustrate the properties of the propo...

متن کامل

Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model

For many years, various methods for the identification and estimation of parameters in linear, discrete-time transfer functions have been available and implemented in widely available Toolboxes for Matlab. This paper considers a unified Refined Instrumental Variable (RIV) approach to the estimation of discrete and continuous-time transfer functions characterized by a unified operator that can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010